Mott Memristors, Spiking Neuristors and Turing Complete Computing

Wednesday, October 24, 2012
7:00 PM
Free and open to the public

Dr. Matthew Pickett and I have been collaborating on a project at HP Labs to explore the possibility of using "locally-active memristors" as the basis for extremely low-power transistorless computation. We first analyzed the thermally-induced first order phase transition from a Mott insulator to a highly conducting state. The current-voltage characteristic of a cross-point device that has a thin film of such a material sandwiched between two metal electrodes displays a current-controlled or 'S'-type negative differential. We derived analytical equations for the behavior these devices, and found that the resulting dynamical model was mathematically equivalent to the "memristive system" formulation of Leon Chua; we thus call these devices "Mott Memristors. We built Pearson-Anson oscillators based on a parallel circuit of one Mott memristor and one capacitor, and demonstrated subnanosecond and subpicoJoule switching time and energy. We then built a neuristor using two Mott memristors and two capacitors, which emulates the Hodgkin-Huxley model of the axon action potential of a neuron. Finally, through SPICE, we demonstrate that spiking neuristors are capable of Boolean logic and Turing complete computation by designing and simulating the one dimensional cellular nonlinear network based on 'Rule 137'.

x x


Stanley Williams

HP Senior Fellow
HP Labs