Both Electrical Engineering and Computer Engineering students must choose a primary technical core (includes 8 courses) and a secondary technical core (includes 4 courses). Electrical Engineering students must choose their primary technical core from the Electrical Engineering technical core courses listed below. Computer Engineering students must choose theirs from the Computer Engineering technical core courses. For the secondary technical core, students may choose any technical core, including Academic Enrichment.

IMPORTANT NOTES:
- Courses in brackets [] denote general prerequisite requirements, which are subject to change.
- Registrar’s online course schedule contains the most accurate course topics and pre-requisites.
- UT course syllabi are available at https://utdirect.utexas.edu/apps/student/coursedocs/nlogon/
- Consult the department offering a course if you have any questions about pre-requisite requirements.
- You must complete at least 48 credit hours of engineering topics for your degree. Required courses (EE 302, 306, 411, 312, 313, 319K, 333T, 351K, 364, 464) yield 25 credit hours of engineering topics, 4 in math & basic sciences and 3 in other. Math courses count as math & basic sciences. See the last page.
- All primary technical core courses and electives must be engineering courses with the exception of the advanced math course listed for the primary technical core.

ELECTRICAL ENGINEERING TECHNICAL CORES

COMMUNICATION, SIGNAL PROCESSING, NETWORKS AND SYSTEMS
This technical core considers communication systems, system and signal analysis, networking theory and protocols, and control and optimization theory. Applications include wireless communications; speech, audio, image and video processing; and feedback control and robotics.

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 427L</td>
<td>EE 351M Digital Signal Processing</td>
<td>EE 362K Introduction to Automatic Control</td>
<td>EE 445S Real-Time Digital Signal Processing Laboratory</td>
</tr>
<tr>
<td></td>
<td>Co-requisite: EE 351K</td>
<td>Pre-requisites: EE 313 & M 340L</td>
<td>Co-requisites: EE 351K & 333T</td>
</tr>
<tr>
<td></td>
<td>OR EE 325 Electromagnetic Engineering</td>
<td>OR EE 371R Digital Image and Video Processing</td>
<td>OR EE 471C Wireless Communication Laboratory</td>
</tr>
<tr>
<td></td>
<td>Pre-requisites: EE 411; M 427J or 427K, M 427L</td>
<td>Pre-requisite: EE 351K</td>
<td>Pre-requisites: EE 445S, 351K or 360K</td>
</tr>
<tr>
<td></td>
<td>Co-requisite: M 427L</td>
<td>Co-requisite: EE 351K</td>
<td>Co-requisite: EE 333T</td>
</tr>
</tbody>
</table>

Students must pick 4 additional electives from the following Technical Core courses:

EE 325 Electromagnetic Engineering [EE 411; M 427] or 427K; PHY 303N and 103L; co-requisite: M427L
EE 325K Antennas and Wireless Propagation [EE 325]
EE 445S Real-Time Digital Signal Processing Laboratory [EE 312, 313 and 319K; co-requisites: EE 333T and 351K]
EE 351M Digital Signal Processing [EE 313; co-requisite: EE 351K]
EE 360C Algorithms [EE 312 and M 325K]
EE 360K Introduction to Digital Communications [EE 351K]
EE 461M Introduction to Data Mining [EE 351K and 360C; M 340L]
EE 362K Introduction to Automatic Control [EE 313 and M 340L]
EE 363M Microwave and Radio Frequency Engineering [EE 325]
EE 471C Wireless Communications Laboratory [EE 445S, 351K or 360K; co-requisite: EE 333T]
EE 371R Digital Image and Video Processing [EE 351K]
EE 479K Data Science Laboratory [EE 351K and 360C; M 340L]

See the last page for allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.
ELECTRONICS AND INTEGRATED CIRCUITS
This core trains students for careers involving design of electronics and integrated circuits including analog and digital integrated circuits, radio frequency circuits, power electronics, and biomedical electronics. The additional elective is only required for those picking this technical core as primary.

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
<th>Additional Elective</th>
</tr>
</thead>
</table>
| M 427L
Adv Calculus for Applications II
Pre-requisite: M 408D, 408L or 408S | EE 325
Electromagnetic Engineering
Pre-requisites: EE 411; M 427L or 427K; PHY 303N and 103L
Co-requisite: M 427L | EE 339
Solid-State Electronic Devices
Pre-requisite: M 427L or 427K;
PHY 303N and 103L
Co-requisite: M 427L | EE 438
Fundamentals of Electronic Circuits I Laboratory
Pre-requisite: EE 411
Co-requisite: EE 313 & 333T | EE 316
Digital Logic Design
Pre-requisite: EE 306 |

Students must pick 3 additional electives from the following Technical Core courses:

- EE 438K Analog Electronics [EE 438]
- EE 338L Analog Integrated Circuit Design [EE 438]
- EE 440 Microelectronics Fabrication Techniques Laboratory [EE 339; co-requisite: EE 333T]
- EE 445L Embedded Systems Design Laboratory [EE 411, 312, 313 and 319K; co-requisite: EE 333T]
- EE 445S Real-Time Digital Signal Processing Laboratory [EE 312, 313 and 319K; co-requisite: EE 333T and 351K]
- EE 460M Digital Systems Design Using HDL [EE 312, 316 and 319K]
- EE 460N Computer Architecture [EE 306, 312, and 319K]
- EE 460R Introduction to VLSI Design [EE 316 and 438]
- EE 361R Radio Frequency Circuit Design [EE 325 and 438]
- EE 363M Microwave & Radio Frequency Engineering [EE 325]
- EE 374K Biomedical Electronic Instrument Design [EE 438]
- EE 374L Applications of Biomedical Engineering [EE 374K; co-requisite: EE 333T]

See the last page for allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.

ENERGY SYSTEMS AND RENEWABLE ENERGY
This technical core area provides the foundation for a career in electric power systems, generation, grid operation, motors and drives, and renewable energy sources. The additional elective is only required for those picking this technical core as primary.

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
<th>Additional Elective</th>
</tr>
</thead>
</table>
| M 427L
Adv Calculus for Applications II
Pre-requisite: M 408D, 408L or 408S | EE 325
Electromagnetic Engineering
Pre-requisites: EE 411; M 427L or 427K; PHY 303N and 103L
Co-requisite: M 427L | EE 368L
Power Systems Apparatus & Lab
Pre-requisite: EE 313
Co-requisite: EE 333T OR
EE 369
Power Systems Engineering
Pre-requisite: EE 313 | EE 462L
Power Electronics Laboratory
Pre-requisite: EE 313
Co-requisite: EE 333T | EE 362K
Introduction to Automatic Control
Pre-requisites: EE 313 & M 340L |

Students must pick 3 additional electives from the following Technical Core courses:

- EE 339 Solid-State Electronic Devices [M 427L or 427K; PHY 303L and 103N]
- EE 339S Solar Energy Conversion Devices [co-requisite: EE 339]
- EE 341 Electric Drives and Machines [EE 313]
- EE 362Q Power Quality and Harmonics [EE 413]
- EE 362R Renewal Energy and Power Systems [EE 313]
- EE 362S Development of a Solar-powered Vehicle [EE 313]
- EE 368L Power Systems Apparatus and Laboratory [EE 313; co-requisite: EE 333T]
- EE 369 Power Systems Engineering [EE 313]
- EE 379K Smart Grids [EE 313]
- ME 337C Intro to Nuclear Power Systems [ME 218; PHY 303L and 103N]

ME 337C has all credit hours in engineering topics. See the last page for the allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.
FIELDS, WAVES AND ELECTROMAGNETIC SYSTEMS

Students in this technical core area study different aspects of applied electromagnetics, including antennas, radio wave propagation, microwave and radio frequency circuits and transmission structures, optical components and lasers, and engineering acoustics. The additional elective is only required for those picking this technical core as primary.

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
<th>Additional Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisite: M 408D, 408L or 408S</td>
<td>Pre-requisites: EE 411; M 427J or 427K; PHY 303N and 103L</td>
<td>Pre-requisite: M 427J or 427K; PHY 303N and 103L</td>
<td>Pre-requisites: EE 313 & 333T</td>
<td>Pre-requisite: EE 325</td>
</tr>
</tbody>
</table>

Students must pick 3 additional electives from the following Technical Core courses:

EE 325K Antennas and Wireless Propagation [EE 325]
EE 334K Quantum Theory of Engineering Materials [M 427K; PHY 303L and 103N]
EE 341 Electric Drives and Machines [EE 313]
EE 347 Modern Optics [EE 313 and 325]
EE 348 Laser and Optical Engineering [EE 339]
EE 361R Radio Frequency Circuit Design [EE 325, 438 and 339]
EE 363M Microwave and Radio Frequency Engineering [EE 325]
EE 363N Engineering Acoustics [M 427K]
EE 369 Power Systems Engineering [EE 313]
EE 374K Biomedical Electronic Instrument Design [EE 438]
EE 374L Applications of Biomedical Engineering [EE 374K; co-requisite: EE 333T]

See the last page for allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.

NANO ELECTRONICS AND NANO TECHNOLOGY

Students in this technical core area learn about the materials and devices used in modern electronic and optoelectronic systems.

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 427L</td>
<td>EE 325 Electromagnetic Engineering</td>
<td>EE 339 Solid-State Electronic Devices</td>
<td>EE 440 Microelectronics Fabrication Techniques</td>
</tr>
<tr>
<td>Pre-requisites: M 408D, 408L or 408S</td>
<td>Pre-requisites: EE 411; M 427J or 427K; PHY 303N and 103L</td>
<td>Pre-requisite: M 427J or 427K; PHY 303N and 103L</td>
<td>Pre-requisites: EE 339</td>
</tr>
</tbody>
</table>

Students must pick 4 additional electives from the following Technical Core courses:

EE 344K Quantum Theory of Engineering Materials [M 427K; PHY 303L and 103N]
EE 438 Fundamentals of Electronic Circuits I Laboratory [EE411; Credit or registration of EE 313]
EE 338L Analog Integrated Circuit Design [EE 438]
EE 339S Solar Energy Conversion Devices [EE 339]
EE 347 Modern Optics [EE 313 and 325]
EE 348 Laser and Optical Engineering [EE 339]
EE 460R Introduction to VLSI Design [EE 316, 438 and 339]
EE 379K High-Throughput Nanopatterning

See the last page for allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.
COMPUTER ENGINEERING TECHNICAL CORES

COMPUTER ARCHITECTURE AND EMBEDDED SYSTEMS

This core involves understanding the operation and design of computers and embedded systems on many different levels, including the instruction set, microarchitecture, logic design, stand-alone systems, and software and hardware components of a larger system. *The additional elective is only required for those picking this technical core as primary.*

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
<th>Additional Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 325K</td>
<td>EE 316</td>
<td>EE 460N</td>
<td>EE 445L</td>
<td>EE 360C</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td>Digital Logic Design</td>
<td>Computer Architecture</td>
<td>Embedded Systems Design Laboratory</td>
<td>Algorithms</td>
</tr>
<tr>
<td>M 408D, 408L or 408S</td>
<td>EE 306</td>
<td>EE 306, 312 and 319K</td>
<td>EE 411, 312, 313 and 319K</td>
<td>EE 333T</td>
</tr>
</tbody>
</table>

Students must pick 3 additional electives from the following Technical Core courses:

- EE 422C Software Design & Implementation II [EE 312 or CS 312]
- EE 445M Embedded and Real-Time Systems Laboratory [EE 445L or EE 445S; co-requisite: EE 333T]
- EE 445S Real-Time Digital Signal Processing Laboratory [EE 312, 313 and 319K; co-requisites: EE 333T and 351K]
- EE 460M Digital Systems Design Using HDL [EE 312, 316 and 319K]
- EE 360P Concurrent and Distributed Systems [EE 422C]
- EE 460R Introduction to VLSI Design [EE 316 and 438]
- EE 361C Multicore Computing [EE 422C]
- EE 461S Operating Systems [EE 312 and 319K, and M 325K]
- EE 362K Introduction to Automatic Control [EE 313 and M 340L]

See the last page for allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.

DATA SCIENCE AND INFORMATION PROCESSING

This technical core trains students in information and signal processing, data mining as well as decision and control algorithms. Applications include data analytics, machine learning, sound and image processing as well as knowledge extraction and actuation. *The additional elective is only required for those picking this technical core as primary.*

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
<th>Additional Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 325K</td>
<td>EE 461M</td>
<td>EE 360C</td>
<td>EE 479K</td>
<td>EE 351M</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td>Intro to Data Mining</td>
<td>Algorithms</td>
<td>Data Science Laboratory</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>M 408D, 408L or 408S</td>
<td>EE 351K and 360C</td>
<td>EE 312 and M 325K</td>
<td>EE 333T</td>
<td>Co-requisite: EE 333T</td>
</tr>
</tbody>
</table>

Students must pick 3 additional electives from the following Technical Core courses:

- EE 422C Software Design & Implementation II [EE 312 or CS 312]
- EE 445S Real-Time Digital Signal Processing Laboratory [EE 312, 313 and 319K; co-requisites: EE 333T and 351K]
- EE 360P Concurrent and Distributed Systems [EE 422C]
- EE 461L Software Engineering and Design Laboratory [EE 422C and M 325K; co-requisite: EE 333T]
- EE 362K Introduction to Automatic Control [EE 313 and M 340L]
- EE 471C Wireless Communications Laboratory [EE 445S, 351M or 360K; co-requisite: EE 333T]
- EE 371R Digital Image and Video Processing [EE 351K]
- EE 379K Architecture for Big Data Science [EE 422C and 351K, and M 340L]

See the last page for allocation of engineering versus math & basic science topics. All primary technical core courses and electives must be engineering courses with the exception of the advanced math course.
SOFTWARE ENGINEERING AND DESIGN

This core covers the engineering life cycle of software systems, including requirement analysis and specification, design, construction/programming, testing, deployment, maintenance, and evolution.

Required:

<table>
<thead>
<tr>
<th>Advanced Math</th>
<th>Core</th>
<th>Core</th>
<th>Core Lab</th>
</tr>
</thead>
</table>
| M 325K
Discrete Mathematics
Pre-requisite: M 408D, 408I, or 408S | EE 422C
Software Design & Implementation II
Pre-requisite: EE 312 | EE 360C
Algorithms
Pre-requisites: EE 312 and M 325K | EE 461L
Software Engineering and Design Laboratory
Pre-requisite: EE 422C and M 325K
Co-requisite: EE 333T |

Students must pick 4 additional electives from the following Technical Core courses:

EE 316*
Digital Logic Design [EE 306 or CS429]
EE 445L*
Embedded Systems Design Laboratory [EE 411, 312, 313 and 319K; co-requisite: EE 333T]
EE 445M*
Embedded and Real-Time Systems Laboratory [EE 445L or 445S; co-requisite: EE 333T]
EE 360F
Intro to Software Engineering [EE 422C or CS 314 (or 314H)]
EE 460N
Computer Architecture [EE 306, 312 and 319K]
EE 360P
Concurrent and Distributed Systems [EE 422C]
EE 360T
Software Testing [EE 422C]
EE 361C
Multicore Computing [EE 422C]
EE 461M
Introduction to Data Mining [EE 351K and 360C; M 340L]
EE 361Q
Requirements Engineering [EE 312]
EE 461S
Operating Systems [EE 312 and 319K, and M 325K]
EE 479K
Data Science Laboratory [EE 351K and 360C, and M 340L]

*If you are choosing Software Engineering and Design along with Academic Enrichment, and your EE 364/464 senior design project does NOT have a significant hardware component, you MUST take two of the following Technical Core Electives: EE 316, EE 445L OR EE 445M. If your EE 364/464 senior design project involves a significant hardware component, then the electives they choose must include at least one of EE 316, EE 445L, OR EE 445M.

See the last page for the allocation of engineering versus math & basic science topics. All credit hours in math courses are in math & basic sciences topics.

ACADEMIC ENRICHMENT TECHNICAL CORE

A student may choose the Academic Enrichment as his or her secondary technical core ONLY. For this core, the student selects 14 hours of coursework to support his or her personal or career goals. At least three of the 14 hours must be an upper division math/science course. Before registering for these courses, the student must prepare a career plan statement and a list of relevant electives, and the Undergraduate Advisor must approve the plan.

You must complete at least 48 credit hours of engineering topics for your degree. Required courses (EE 302, 306, 411, 312, 313, 319K, 333T, 351K, 364, 464) yield 25 credit hours of engineering topics, 4 in math & basic sciences and 3 in other, as described on the last page. The primary technical cores described above would yield a minimum of 22 / 23 credit hours of engineering topics and 4 / 3 hours of math & basic science topics, depending on whether M 427L / M 325K were taken.

Academic Enrichment courses may include traditional upper-division technical courses in Electrical Engineering and other allied fields. For example, those wanting to strengthen their mathematical background might consider the courses listed on the next page. In particular, those wanting to prepare for graduate studies in communications, data science, machine learning, networks, signal processing, and/or systems/controls, might consider the following:

M 362M
Introduction to Stochastic Processes [M 362K or EE 351K]
M 365C
Real Analysis I
[At least two of the following: M 325K, M 328K, M 340L/341; consent of undergraduate advisor]
M 378K
Introduction to Mathematical Statistics [M 362K or EE 351K]

Those wanting a stronger background in system software might consider the following courses:
CS 356 Computer Networks [CS 439 or 372]
CS 371P Object-Oriented Programming [CS 310 or 429]
CS 375 Compilers [CS 310 or 310H; CS 336 or 336H; M 408D or 408M]
EE 360P Concurrent and Distributed Systems [EE 422C]
EE 461S Operating Systems [EE 312 and 319K, and M 325K]

Academic Enrichment courses may be in other fields at the University, such as business, economics, communication, music, and philosophy; or research done with a faculty member in EE X60 Special Problems in Electrical and Computer Engineering. The courses must be completed in residence; courses in an approved study abroad program require the approval of the Undergraduate Advisor. There may include up to three hours of EE 325L Cooperative Engineering, EE 225M Cooperative Engineering, and EE 125S Internship in Electrical and Computer Engineering.

ALTERNATIVE ADVANCED MATH COURSES

If a student chooses BOTH Electrical Engineering Technical Core Areas

M 325K Discrete Mathematics [M 408D, 408L or 408S]
M 328K Introduction to Number Theory [M 325K]
M 346 Applied Linear Algebra [M 340L]
M 348 Scientific Computing [M 340L, CS 303E or 307]
M 358K Applied Statistics ### [M 362K or EE 351K]
M 361 Theory of Functions of Complex Variables [M 427K or 427L]
M 362M Introduction to Stochastic Processes [M 362K or EE 351K]
M 365C Real Analysis I [At least two of the following: M 325K, M 328K, M 340L/341; consent of undergraduate advisor]
M 372K Partial Differential Equations and Applications [M427K]
M 374 Fourier and Laplace Transforms [M 427K]
M 374M Mathematical Modeling in Science and Engineering [M 427K; M 340L or 341]
M 378K Introduction to Mathematical Statistics ### [M 362K or EE 351K]

ALTERNATIVE ADVANCED MATH COURSES

If a student chooses BOTH Computer Engineering Technical Core Areas

M 427L Advanced Calculus for Applications II [M 408D or 408M]
M 328K Introduction to Number Theory [M 325K]
M 343K Introduction to Algebraic Structures [two of the following: M 325K, M 328K and M 341]
M 344K Intermediate Symbolic Logic [PHL 313, 313K or 313Q]
M 348 Scientific Computation in Number Analogy [M 340L; CS 303E or 307]
M 358K Applied Statistics ### [M 362K or EE 351K]
M 365C Real Analysis I [At least two of the following: M 325K, M 328K, M 340L/341; consent of undergraduate advisor]
M 374M Mathematical Modeling in Science and Engineering [M 427K and 340L]
M 378K Introduction to Mathematical Statistics ### [M 362K or EE 351K]
CS 341 Automata Theory [Computer Science 429 (or 310) or 429H (or 310H)]
CS 346 Cryptography [CS 429 (or 310) or 429H (310H); 331 (or 357), 331H (or 357H), 341, or 341H; co-requisite: M 340L]

M 378K Introduction to Mathematical Statistics [M 362K or EE 351K] is more in-depth than M 358K.

Check with the CS Dept. / Advisor for ALL PREREQUISITE REQUIREMENTS & CLASS SEAT AVAILABILITY
ABET Advising Sheet (must have 48 engineering and 32 math/science credits)

According to ABET requirements, a student must complete 48 credit hours of engineering topics and 32 credit hours of math & basic science credit hours to satisfy undergraduate ECE degree requirements.

Other than EE306, 313, 351K and 333T, all other ECE courses have ABET engineering hours equal to the total hours of the class. Computer Science courses that are similar to those taught in the ECE Department, e.g. CS 314 Programming, CS 331 Algorithms, CS 429 Computer Systems, CS 350F Operating Systems, CS 356 Computer Networks, CS 371P Objected Oriented Programming, and CS 375 Compilers, would have 3 credits of engineering topics each and 0 credits of math & basic science credits each.

<table>
<thead>
<tr>
<th>Technical Core Courses and Electives</th>
<th>Engineering Topic Credits</th>
<th>Math & Basic Science Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M408C, M408D, M427K, M340L</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>PHY303K/103M, PHY303L/103N</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>EE 302 Intro to ECE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EE 306 Intro to Computing</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EE 411 Circuit Theory</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>EE 312 Software Design Implementation I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EE 313 Linear Systems and Signals</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EE 319K Intro to Embedded Systems</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EE 333T Engineering Communications</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EE 351K Probability & Random Processes</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>EE 364 Intro to Engineering Design</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>EE 464 Senior Design Project</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Subtotal: 25 engineering topic credits and 27 math & basic science topic credits.

Technical Core and Other Courses	Course
Primary Tech Core Math¹ | Primary Tech Core Math¹
Primary Tech Core Required¹ | Primary Tech Core Required¹
Primary Tech Core Required¹ | Primary Tech Core Required¹
Primary Tech Core Elective/Required¹ | Primary Tech Core Elective/Required¹
Primary Tech Core Elective¹ | Primary Tech Core Elective¹
Primary Tech Core Elective¹ | Primary Tech Core Elective¹
Primary Tech Core Elective¹ | Primary Tech Core Elective¹
Secondary Tech Core Math/Science² | Secondary Tech Core Math/Science²
Secondary Tech Core Elective² | Secondary Tech Core Elective²
Secondary Tech Core Elective² | Secondary Tech Core Elective²
Secondary Tech Core Elective² | Secondary Tech Core Elective²
Other Course #1 | Other Course #1
Other Course #2 | Other Course #2

Your ABET Total: 1 credit hour.

¹ Primary technical core math course is either M 427L Adv. Calc. for Applications II for an EE technical core or M 325K Discrete Math for a Computer Engineering technical core. All credit hours are in math & basic sciences. Eight primary technical core classes would yield 22 (23) credit hours of engineering topics and 4 (3) hours of math & basic sciences topics for an EE (Computer Engineering) technical core.

² Secondary technical core classes must have at least 14 hours; see the Academic Enrichment section above for additional requirements when Academic Enrichment is the secondary core.

<table>
<thead>
<tr>
<th>Student Name</th>
<th>EID</th>
<th>Student Signature (Date)</th>
<th>Advisor (Date)</th>
</tr>
</thead>
</table>

7